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8.4.1 OPTIMALITY 
CONDITIONS FOR EQUALITY 
CONSTRAINTS 



IFT for optimality conditions in the 
equality-only case 

�• Problem: 
�• Assumptions: 

1.       is a solution  
2. LICQ:     has full row rank.  

�• From LICQ: 
�• From IFT:   

�• As a result    is a solution of NLP iff       
solves unconstrained problem:  

�–   
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Properties of Mapping 

�• From IFT: 

�• Two important consequences  
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First-order optimality conditions 

�• Optimality of unconstrained optimization problem 

�• The definition of the Lagrange Multiplier Result in 
the first-order (Lagrange, KKT) conditions:  
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A more abstract and general proof 

�• Optimality of unconstrained optimization problem 

�• Using 
�• We obtain:  
�• We thus obtain the optimality conditions:  

 
DxD
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The Lagrangian 

�• Definition 
�• Its gradient 

�• Its Hessian 

�• Where 

�• Optimality conditions:      

 L x,( )= f x( ) T c x( )
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Second-order conditions 

�• First, note that:  
�• Sketch of proof: total derivatives in   : 

�• Second derivatives:       
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Computing Second-Order 
Derivatives 

�• Expressing the second derivatives of Lagrangian 

�• Solve for total derivative of multiplier and 
replace conclusion follows.  
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Summary: Necessary Optimality 
Conditions 

�• Summary:  

�• Rephrase first order:  

�• Rephrase second order necessary conditions.  
 xL x*, *( ) = 0

 xc x*( )w = 0 wT
xx
2 L x*, *( )w 0

  
L x*, *( ) = 0; ZT 2

xxL x*D , x*D( )( )Z = 0



Sufficient Optimality Conditions 

�• The point is a local minimum if LICQ and the 
following holds:  

�• Proof: By IFT, there is a change of variables 
such that  

�• The original problem can be phrased as 

 
(1) xL x*, *( ) = 0; (2) xc x*( )w = 0 > 0 wT

xx
2 L x*, *( )w w 2

  

u N 0( ) n ncu x u( ); x N x*( ),c x( ) = 0 u N 0( ); x = x u( )

xc x*( ) ux u( )
u=0

= 0; Z = ux u( )

minu f x u( )( )



Sufficient Optimality Conditions 

�• We can now piggy back on theory of 
unconstrained optimization, noting that. 

�• Then from theory of unconstrained optimization 
we have a local isolated minimum at 0 and thus the 

original problem at     . (following the local 
isomorphism above)   

  

u f x u( )( )
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uu
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Another Essential Consequence 
�• If LICQ+ second-order conditions hold at the 

solution      , then the following matrix must be 
nonsingular (EXPAND). 

�• The system of nonlinear equations has an 
invertible Jacobian,  

x*

 

xx
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x
T c x*( ) 0

 

xL x*, *( )
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8.4.2 FIRST-ORDER 
OPTIMALITY CONDITIONS 
FOR MIXED EQ AND INEQ 
CONSTRAINTS 



The Lagrangian 

�• Even in the general case, it has the same 
expression 

   
L x( ) = f x( ) ici x( )

i E A



First-Order Optimality Condition 
Theorem 

 
f x*( ) T

A x*( ) c
A x*( ) x

*( ) = 0 Multipliers are unique !!

Equivalent Form:  



Sketch of the Proof 

�• If        is a solution of the original problem, it is 
also a solution of the problem.   

�• From the optimality conditions of the problem 
with equality constraints, we must have (since 
LICQ holds) 

�• But I cannot yet tell by this argument 

x*

 
min f x( ) subject to c

A x*( ) x( ) = 0

 
i{ }i A x*( ) such that   f x*( ) i ci x

*( )
i A x*( )

= 0

i 0



Sketch of the Proof: The sign of the 
multiplier 

�• Assume now one multiplier has the �“wrong�” 
sign. That is 

�• Since LICQ holds, we can construct a feasible 
path that �“takes off�” from that constraint 
(inactive constraints do not matter locally) 

�•      

  j A x*( ) I , j < 0

  

c
A x*( ) x t( )( ) = tej x t( ) Define b = d

dt
x t( )t=0 cA x( )b = ej

d
dt
f x t( )( )t=0

= f x*( )T b = T
cA x( )

cA x( )b = j < 0

t1 > 0, f x t1( )( ) < f x 0( )( ) = f x*( ), CONTRADICTION!!



Strict Complementarity 

�• It is a notion that makes the problem look 
�“almost�” like an equality.  



8.5 SECOND-ORDER 
CONDITIONS 



Critical Cone 

�• The subset of the tangent space, where the 
objective function does not vary to first-order. 

�• The book definition.  

�• An even simpler equivalent definition.  

 
C x*, *( ) = w T x*( ) f x*( )T w = 0{ }



Rephrasing of the Critical Cone 

�• By investigating the definition 

�• In the case where strict complementarity holds, 
the cones has a MUCH simplex expression.  

  

w C x*, *( )
ci x

*( )T w = 0 i E

ci x
*( )T w = 0 i A x*( ) I i

* > 0

ci x
*( )T w 0 i A x*( ) I i

* = 0

 
w C x*, *( ) ci x

*( )w = 0 i A x*( )



Statement of the Second-Order 
Conditions 

�• How to prove this? In the case of Strict 
Complementarity the critical cone is the same as 
the problem constrained with equalities on 
active index.  

�• Result follows from equality-only case.  



Statement of second-order sufficient 
conditions 

�• How do we prove this? In the case of strict 
complementarity again from reduction to the equality 
case.  

 x
* = arg minx f x( )  subject to cA x( ) = 0



How to derive those conditions in 
the other case?  

�• Use the slacks to reduce the problem to one 
with equality constraints. 

�• Then, apply the conditions for equality 
constraints.   

�• I will assign it as homework.  

  

min
x Rn ,z RnI ,

f (x)

s.t. cE x( ) = 0

cI x( )
j

z j
2 = 0 j = 1,2,�…nI



Summary: Why should I care about 
Lagrange Multipliers?  

�• Because it makes the optimization problem in 
principle equivalent to a nonlinear equation. 

�• I can use concepts from nonlinear equations 
such as Newton�’s for the algorithmics.   

 

xL x*, *( )
cA x*( )

= 0; det
xx
2 L x*, *( ) xcA x*( )
x
T cA x*( ) 0

0



Section 9   
Fundamentals of Algorithms for 
Constrained Optimization 



9.1 TYPES OF CONSTRAINED 
OPTIMIZATION 
ALGORITHMS 



Types of Optimization Algorithms 
�• All of the algorithms solve iteratively a simpler 

problem.  
�– Penalty and Augmented Lagrangian Methods. 
�– Sequential Quadratic Programming.  
�– Interior-point Methods.  

�• The approach follows the usual divide-and-
conquer approach:  

�• Constrained Optimization- 
�• Unconstrained Optimization 
�• Nonlinear Equations 
�• Linear Equations 



Quadratic Programming Problems 

�• Algorithms for such problems are interested to 
explore because 
�– 1. Their structure can be efficiently exploited.  
�– 2. They form the basis for other algorithms, such as 

augmented Lagrangian and Sequential quadratic 
programming problems.  



Penalty Methods 

�• Idea: Replace the constraints by a penalty term.  
�• Inexact penalties: parameter driven to infinity to 

recover solution. Example:  

�• Exact but nonsmooth penalty �– the penalty 
parameter can stay finite.  

 

x* = arg min f (x) subject to c x( ) = 0

xµ = arg min f x( ) + µ
2

ci
2

i E

x( ); x* = limµ xµ = x*

Solve with unconstrained 
optimization 

 
x* = arg min f (x) subject to c x( ) = 0 x* = arg min f x( ) + µ ci x( )

i E

; µ µ0



Augmented Lagrangian Methods 

�• Mix the Lagrangian point of view with a penalty 
point of view.   

 

x* = arg min f (x) subject to c x( ) = 0

xµ , = arg min f x( ) ici
i E

x( ) + µ
2

ci
2

i E

x( )

x* = lim * xµ ,  for some µ µ0 > 0



Sequential Quadratic Programming 
Algorithms  

�• Solve successively Quadratic Programs. 

�• It is the analogous of Newton�’s method for the case 
of constraints if  

�• But how do you solve the subproblem? It is possible 
with extensions of simplex which I do not cover. 

�• An option is  BFGS which makes it convex.  

 

min p
1
2
pT Bk p + f xk( )

subject to ci xk( )d + ci xk( ) = 0 i E

ci xk( )d + ci xk( ) 0 i I

 
Bk = xx

2 L xk , k( )



Interior Point Methods 
�• Reduce the inequality constraints with a barrier 

�• An alternative, is use a penalty as well:  

�• And I can solve it as a sequence of 
unconstrained problems! 

 

minx,s f x( ) µ log si
i=1

m

subject to ci x( ) = 0 i E

ci x( ) si = 0 i I

 
minx f x( ) µ log si

i I

+ 1
2µ

ci x( ) s( )2
i I

+ 1
2µ

ci x( )( )2
i E



9.2 MERIT FUNCTIONS AND 
FILTERS  



Feasible algorithms  

�• If I can afford to maintain feasibility at all steps, 
then I just monitor decrease in objective 
function.  

�• I accept a point if I have enough descent.  
�• But this works only for very particular 

constraints, such as linear constraints or bound 
constraints (and we will use it).  

�• Algorithms that do that are called feasible 
algorithms.  



Infeasible algorithms 
�• But, sometimes it is VERY HARD to enforce 

feasibility at all steps (e.g. nonlinear equality 
constraints).  

�• And I need feasibility only in the limit; so there is 
benefit to allow algorithms to move on the outside of 
the feasible set.  

�• But then, how do I measure progress since I have two, 
apparently contradictory requirements:  
�– Reduce infeasibility (e.g.                                ) 
�– Reduce objective function.  
�– It has a multiobjective optimization nature!  

 
ci x( )

i E

+ max ci x( ),0{ }
i I



9.2.1 MERIT FUNCTIONS 



Merit function 

�• One idea also from multiobjective optimization: 
minimize a weighted combination of the 2 
criteria.  

�• But I can scale it so that the weight of the 
objective is 1.  

�• In that case, the weight of the infeasibility 
measure is called �“penalty parameter�”. 

�• I can monitor progress by ensuring that         
decreases, as in unconstrained optimization.  

 
x( ) = w1 f x( ) + w2 ci x( )

i E

+ max ci x( ),0{ }
i I

; w1,w2 > 0

x( )



Nonsmooth Penalty Merit Functions 

�• It is called the l1 merit function.  
�• Sometimes, they can be even EXACT. 
�•   

Penalty parameter 



Smooth and Exact Penalty 
Functions 

�• Excellent convergence properties, but very 
expensive to compute.  

�• Fletcher�’s augmented Lagrangian: 

�• It is both smooth and exact, but perhaps 
impractical due to the linear solve.   



Augmented Lagrangian 

�• Smooth, but inexact.  

�• An update of the Lagrange Multiplier is needed.  
�• We will not uses it, except with Augmented 

Lagrangian methods themselves.   

 

x( ) = f x( ) ici
i E

x( ) + µ
2

ci
2

i E

x( )



Line-search (Armijo) for 
Nonsmooth Merit Functions 

�• How do we carry out the �“progress search�”? 
�• That is the line search or the sufficient reduction 

in trust region?  
�• In the unconstrained case, we had 

�• But we cannot use this anymore, since the 
function is not differentiable.  

f xk( ) f xk +
mdk( ) m f xk( )T dk ; 0 < <1, 0 < < 0.5



Directional Derivatives of 
Nonsmooth Merit Function 

�• Nevertheless, the function has a directional 
derivative (follows from properties of max 
function). EXPAND 

�• Line Search: 
�• Trust Region  

D x,µ( ); p( ) = limt 0,t>0
x + tp,µ( ) x,µ( )

t
; D max f1, f2{ }, p( ) = max f1p, f1p{ }

xk ,µ( ) xk +
m pk ,µ( ) mD xk ,µ( ), pk( );

xk ,µ( ) xk +
m pk ,µ( ) 1 m 0( ) m pk( )( );

0 < 1 < 0.5



And �…. How do I choose the 
penalty parameter?  

�• VERY tricky issue, highly dependent on the 
penalty function used. 

�• For the l1 function, guideline is:  

�• But almost always adaptive. Criterion: If 
optimality gets ahead of feasibility, make penalty 
parameter more stringent.  

�• E.g l1 function: the max of current value of 
multipliers plus safety factor (EXPAND) 
�–   



9.2.2 FILTER APPROACHES 



Principles of filters 

�• Originates in the multiobjective optimization 
philosophy: objective and infeasibility 

�• The problem becomes:  



The Filter approach 



Some Refinements 

�• Like in the line search approach, I cannot accept 
EVERY decrease since I may never converge.  

�• Modification:  

 10 5



9.3 MARATOS EFFECT AND 
CURVILINEAR SEARCH 



Unfortunately, the Newton step may 
not be  compatible with penalty  

�• This is called the Maratos 
effect.  

�• Problem:  

�• Note: the closest point on 
search direction (Newton) 
will be rejected ! 

�• So fast convergence does 
not occur 



Solutions?   

�• Use Fletcher�’s function that does not suffer 
from this problem.  

�• Following a step:  
�• Use a correction that satisfies 

�• Followed by the update or line search: 

�• Since          compared to                           
corrected Newton step is likelier to be accepted.         

xk + pk +
2 �ˆpk

c xk + pk + �ˆpk( ) =O xk x*
3( ) c xk + pk( ) =O xk x*

2( )



Section 10: Quadratic 
Programming   
Reference: Chapter 16, Nocedal and 
Wright.  



10.1 GRADIENT PROJECTIONS 
FOR QPS WITH BOUND 
CONSTRAINTS 



Projection 

�• The problem:  
�• Like in the trust-region case, we look for a Cauchy 

point, based on a projection on the feasible set.  
�• G does not have to be psd (essential for AugLag) 
�• The projection operator:  



The search path 

�• Create a piecewise linear 
path which is feasible (as 
opposed to the linear one 
in the unconstrained case) 
by projection of gradient.  



Computation  of breakpoints 

�• Can be done on each component individually 

�• Then the search path becomes on each 
component:  



Line Search along piecewise linear 
path  

�• Reorder the breakpoints eliminating duplicates 
and zero values to get 

�• The path:  

�• Whose direction is:  

 0 < t1 < t2 <�…



Line Search (2) 

�• Along each piece,          find the minimum of the 
quadratic  

�• This reduces to analyzing a one dimensional 
quadratic form of t on an interval.  

�• If the minimum is on the right end of interval, 
we continue.  

�• If not, we found the local minimum and the 
Cauchy point.  

t j 1,t j

1
2
xTGx + cT x



Subspace Minimization 
�• Active set of Cauchy Point 

�• Solve subspace minimization problem 

�• No need to solve exactly. For example truncated 
CG with termination if one inactive variable 
reaches bound.   



Gradient Projection for QP 

Or, equivalently, if  projection does not advance from 0.  


